Squark flavor constraints from B→K*I+I-

Christian Gross

1.9.11, SUSY 2011, Fermilab

work in preparation with Gudrun Hiller and Stefan Schacht

Outline

a) improved C₉-C₁₀ constraints from $B \rightarrow K^*I^+I^-$ -data [Bobeth, Hiller, van Dyk; '10,'11]

b) this work: implications for SUSY flavor

c) ... and (briefly) model-implications example: radiative flavor violation

$\Delta B=I$ Effective Hamiltonian

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i} C_i(\mu) O_i(\mu) + \text{h.c.}$$
short distance physics long distance physics

most important operators for $B \rightarrow K^*I^+I^-$:

$$O_7 \sim m_b [\bar{s}_L \sigma_{\mu\nu} b_R] F^{\mu\nu}$$
 $O_{9(10)} \sim [\bar{s}_L \gamma_\mu b_L] [\bar{l} \gamma^\mu (\gamma_5) l]$

$$C_i = C_i^{SM} + C_i^{NP}$$

- $|C_7|$: quite constrained by $b \rightarrow s \gamma$ data
- C₉,C₁₀: plenty of room for New Physics

B \rightarrow K*I⁺I⁻ at low K* recoil \longrightarrow new C₉-C₁₀ constraints

what are consequences for BSM models? here: SUSY new constraints for squark FV?

B \rightarrow K*I⁺I⁻ at low K* recoil \longrightarrow new C₉-C₁₀ constraints

B \rightarrow K*I⁺I⁻ at low K* recoil \longrightarrow new C₉-C₁₀ constraints

what are consequences for BSM models? here: SUSY new constraints for squark FV?

Squark mass matrices in SCKM basis

 $(M_{\tilde{d}}^2$: analogous...)

we try to constrain $(\Delta_{23}^u)_{LR}$ more precisely: the dimensionless parameter $(\delta_{23}^u)_{LR} = \frac{(\Delta_{23}^u)_{LR}}{\frac{1}{6} \left(5m_{\tilde{q}}^2 + m_{\tilde{t}_R}^2\right)}$

other squark flavor parameters: quite constraint by $b \rightarrow s\gamma$ and/or subleading in C_9, C_{10} !

C_{9,10}NP from squark-chargino loops

$$\begin{split} C_9^{\text{MI},\tilde{\chi}} &= \frac{K_{cs}^*}{K_{ts}^*} \frac{1}{4 \, s_W^2} \frac{\lambda_t}{g_2} \Big((4 s_W^2 - 1) F^{\text{Z-p.}} + 4 s_W^2 \frac{m_W^2}{m_{\tilde{q}}^2} F^{\text{\gamma-p.}} - \frac{m_W^2}{m_{\tilde{q}}^2} F^{\text{box}} \Big) (\delta_{23}^u)_{LR} \\ C_{10}^{\text{MI},\tilde{\chi}} &= \frac{K_{cs}^*}{K_{ts}^*} \frac{1}{4 \, s_W^2} \frac{\lambda_t}{g_2} \Big(F^{\text{Z-p.}} + \frac{m_W^2}{m_{\tilde{q}}^2} F^{\text{box}} \Big) (\delta_{23}^u)_{LR} \end{split}$$

[Cho et al.;'96 and Lunghi et al.;'99]

SUSY parameter scan

test each parameter point for

- b→sγ constraints
- ρ-parameter constraints
- Higgs-, chargino-, stop mass limits

 • [
maximal	reach:

- (I) for MFV-SUSY
 - $|C_9^{NP}/C_9^{SM}| < 2\%$
 - $|C_{10}^{NP}/C_{10}^{SM}| < 8\%$
- (2) for $(\delta^u_{23})_{LR} \neq 0$
 - $\bullet \quad |C_9^{NP}/C_9^{SM}| < 8\%$
 - $|C_{10}^{NP}/C_{10}^{SM}| < 82\%$

	min.	max.	# of scanned
			points
$\tan \beta$	2	15	7
m_{H^\pm}	300	1000	7
M_2	100	1000	7
$\mid \mid \mu \mid$	80	1000	7
$\mid m_{ ilde{t}_R} \mid$	200	600	7
A_t	-1000	1000	20

Improvement of $(\delta^u_{23})_{LR}$ -constraints

only $b \rightarrow s\gamma$:

A, [GeV] 0.3 0.35 0.55 0.45 $m_{\tilde{t}_R}$ [GeV]

including $B \rightarrow K^*I^+I^-$:

other SUSY parameters: $m_{\tilde{\nu}}=100\,\mathrm{GeV},\,m_{H^\pm}=400\,\mathrm{GeV},\,m_{\tilde{q}}=1\,\mathrm{TeV},\,\tan\beta=2,\\ M_2=100\,\mathrm{GeV},\,\mu=-1\,\mathrm{TeV},\,m_{\tilde{q}}=1\,\mathrm{TeV}$

Implications for flavor-models?

constraints still mild

only models with large $(\delta^u_{23})_{LR} \sim A^u_{23}$ are affected

example: radiative flavor violation model of [Crivellin et al.;'11]

setup:

$$(Y_q^{tree})_{ij} = \delta_{i,3}\delta_{j,3}\lambda_q \qquad V_{CKM}^{tree} = \mathbf{1}_3$$

 $ilde{m}_Q^2, ilde{m}_U^2, ilde{m}_D^2$: diag, 1.+2. el. degenerate

flavor-breaking from A-terms only!

- quark mixing + masses generated from SUSYloops with flavorbreaking A-terms
- to generate V_{cb} in upsector need large A^u23

Our results allow to constrain this model ...but work still in progress

Conclusions

- New theoretical and experimental results regarding B→K*I⁺I⁻ yielded improved constraints on C₉/C₁₀
- We find that $(\delta_{23}^u)_{LR}$ is the most sensitive SUSY flavor parameter
- Bounds are strengthened, but still only mild ... fortunately: good prospects from LHCb!
- can restrict models with large A^u23